

UNIVERSITÀ DEGLI STUDI DI TRIESTE piazzale Europa n. 1 - 34127 Trieste - Italia

> progetto

LAVORI DI RISTRUTTURAZIONE E RIQUALIFICAZIONE FUNZIONALE DEGLI EDIFICI "F1" ED "F2" PRESSO IL COMPRENSORIO EX OPP DI S. GIOVANNI IN TRIESTE, AD USO DELLA FACOLTA' E DEL DIPARTIMENTO DI PSICOLOGIA

> Responsabile Unico del Procedimento

Arch. ILIO CAMPANI

Sez. Edilizia e Affari Tecnici

tel. +39-040.558.7709; fax +39-040.558.3467; e-mail: ilio.campani@amm.units.it;

> Componentl ATI: > CAPOGRUPPO

PROGETTAZIONE DEFINITIVA ED ESECUTIVA COORDINATA

Gruppo di lavoro:

Arch. MAICHER BIAGINI

(responsablle progettazione architettonica)

Ing. ARDILIO MAGOTTI

(coordinamento edile e attività specialistiche) (responsabile progetto impianti elettrici)

Arch. ANTONIO ARMAROLI

(progettazione architettonica)

• Ing. PAOLO GENTA

(responsabile progetto impianti idrici e meccanici)

Arch. ANIELLO TAFURO

(coordinatore della sicurezza in fase di progettazione

• Ing. ALBERTO CALZA

(responsabile progetto strutture)

collaboratori:

Ing. LETIZIA GILARDI Ing. LUIGI CAVALLO Arch. LORENZO VILLA Ing. SIMONE FRATI > MANDANTE

Arch. ENRICO FONTANILI

via Pavese n°14 - 42017 Novellara (RE) tel.: +39 0522 661857

PROGETTAZIONE DEFINITIVA ED ESECUTIVA ARCHITETTONICA

> MANDANTE

ARCHIDOMUS STUDIO TECNICO ASSOCIATO

via Lazzaretto Vecchio, 10 - 34123 Trieste tel.040 313088 fax.040 3225283 email: info@studioarchidomus.it c.f. e partita IVA: 00798790325

RILIEVO A SUPPORTO DELLA PROGETTAZIONE

Geom. ARMANDO GILARDI Geom. DAVIDE MEZZINA

COORDINAMENTO DELLA SICUREZZA IN FASE DI ESECUZIONE

Arch. ROBERTO FLAMINIO

> fase

PROGETTO ESECUTIVO

00	06/04/2012	EMISSIONE			
REV.	DATA	DESCRIZIONE - MOTIVO DELLA REVISIONE	REDATTO	CONTROLLATO	APPROVATO

TITOLO ELABORATO

IMPIANTI MECCANICI RELAZIONE TECNICA DI CALCOLO IMPIANTO IDRICO ANTINCENDIO

AGGIORNAMENTO

NUMERO ELABORATO

E.IM.02.5

DATA PRATICA N° 2873

SCALA /

PERCORSO FILE: M:\Pratiche\2873\D2D\20100907 - ESECUTIVO\ARCHITETTONICO\2873-00-E.AR.00.0 - COPERTINE-00.dwg

RELAZIONE TECNICA E DI CALCOLO DI UN IMPIANTO DI SPEGNIMENTO IDRICO A NASPI

L'impianto è a servizio dell'attività: Scuol Sita in: piazzale Europa n. 1 - 34127 Tri	
Proprietà:	
UNIVERSITÀ DEGLI STUDI DI TRIEST	ΓE
Timbro e Firma del legale rappresentante della propr	rietà:
Progettazione a cura di: Ing. Paolo Genta per CAIREPRO	Via: Gandhi n°1 CAP: 42123 Città: Reggio Emilia Tel: 0522/1538501 Fax: 0522/322127 E-mail: segreteria@cairepro.it
Elenco documenti: Planimetria generale impianto naspi	D.IM.08.1 D.IM.08.2 D.IM.09.1 D.IM.09.2
Data: 06/04/2012	Timbro e Firma del Tecnico:

1.	RIFERIMENTI NORMATIVI	3
2.	COMPOSIZIONE E COMPONENTI DELL'IMPIANTO	5
3.	PROGETTAZIONE DELL'IMPIANTO	6
	CRITERI DI DIMENSIONAMENTO DIMENSIONAMENTO DELLA RETE IDRICA	6
4.	DATI DI CALCOLO DELLA RETE EDIICIO F1	8
5.	RISULTATI DI CALCOLO EDIFICIO F1	10 -
	DATI IDRAULICI TUBAZIONI DATI NASPI ATTIVI: DATI NODI: RIASSUNTO DIAMETRI:	10 - 11 -
6.	ALIMENTAZIONE EDIFICIO F1	13
7.		
8.	RISULTATI DI CALCOLO EDIFICIO F2	16 -
	DATI IDRAULICI TUBAZIONI DATI NASPI ATTIVI: DATI NODI: RIASSUNTO DIAMETRI:	16 - 16 -
9.	ALIMENTAZIONI EDIFICIO F2	19 -

1. RIFERIMENTI NORMATIVI

Agli impianti idrici antincendio si applicano le seguenti norme tecniche:

- Norma UNI 10779 "Impianti di estinzione incendi: Reti di Idranti" (Luglio 2007)
- Norma UNI EN 12845 "Installazioni fisse antincendio. Sistemi automatici a sprinkler"
- Norma UNI 11292 "Locali destinati ad ospitare gruppi di pompaggio per impianti antincendio –
 Caratteristiche costruttive e funzionali"
- Lettera Circolare Ministero dell'Interno 30 ottobre 1996 n. P2244/4122 sott. 32.
- Circolare del Ministero dell'Interno n° 24 MI.SA. del 26/1/1993. Impianti di protezione attiva antincendio.
- **D.M. 30/11/1983** Termini, definizioni generali e simboli grafici di prevenzione incendi.
- **D.M.** n° 37 del 28/1/2008 Norme per la sicurezza degli impianti
- **D.P.R. n. 447** Regolamento di attuazione della Legge n° 46 del 5/3/1990 in materia di sicurezza degli impianti.

Sono state considerate inoltre le seguenti norme tecniche emanate dall'UNI:

UNI 804	Apparecchiature per estinzione incendi - Raccordi per tubazioni flessibili.
UNI 810	Apparecchiature per estinzione incendi - Attacchi a vite.
UNI 814	Apparecchiature per estinzione incendi - Chiavi per la manovra dei raccordi, attacchi e
	tappi per tubazioni flessibili.
UNI 7421	Apparecchiature per estinzione incendi - Tappi per valvole e raccordi per tubazioni
	flessibili.
UNI 7422	Apparecchiature per estinzione incendi - Requisiti delle legature per tubazioni
	flessibili.
UNI 9487	Apparecchiature per estinzione incendi - Tubazioni flessibili antincendio di DN 70
	per pressioni di esercizio fino a 1.2 MPa.
UNI EN 671- 1	Sistemi fissi di estinzione incendi - Sistemi equipaggiati con tubazioni - Naspi
	antincendio con tubazioni semirigide.
UNI EN 671- 2	Sistemi fissi di estinzione incendi - Sistemi equipaggiati con tubazioni - Idranti a muro
	con tubazioni flessibili.
UNI EN 671- 3	Sistemi fissi di estinzione incendi - Sistemi equipaggiati con tubazioni – Manutenzione
	dei naspi antincendio con tubazioni semirigide ed idranti a muro con tubazioni
	flessibili.
UNI EN 694	Tubazioni semirigide per sistemi fissi antincendio.
UNI EN 1452	Sistemi di tubazioni di materia plastica per la distribuzione di acqua – Policloruro di
	vinile non plastificato (PVC-U).
UNI EN 10224	Tubi e raccordi di acciaio non legato per il convogliamento di acqua e di altri liquidi
	acquosi – Condizioni tecniche di fornitura.
UNI EN 10225	Tubi di acciaio non legato adatti alla saldatura e alla filettatura – Condizioni tecniche

	1 48.
	di fornitura.
UNI EN 12201	Sistemi di tubazioni di materia plastica per la distribuzione dell'acqua - Polietilene
	(PE)
UNI EN 13244	Sistemi di tubazioni di materia plastica in pressione interrati e non per il trasporto di
	acqua per usi generali, per fognature e scarichi – Polietilene (PE)
UNI EN 14339	Idranti antincendio sottosuolo
I	
UNI EN 14384	Idranti antincendio a colonna soprasuolo.
UNI EN 14540	Tubazioni antincendio – Tubazioni appiattibili impermeabili per impianti fissi.
UNI EN ISO 15493	Sistemi di tubazione plastica per applicazioni industriali (ABS, PVC-U e PVC-C).
	Specifiche per i componenti e il sistema. Serie metrica.
UNI EN ISO 15494	Sistemi di tubazione plastica per applicazioni industriali (PB, PE e PP). Specifiche per
	i componenti e il sistema. Serie metrica.
UNI EN ISO 14692	Industrie del petrolio e del gas naturale – Tubazioni in plastica vetro-rinforzata.

2. COMPOSIZIONE E COMPONENTI DELL'IMPIANTO

La rete di naspi comprenderà i seguenti componenti principali:

- Alimentazione idrica da acquedotto;
- rete di tubazioni fisse, a pettine, permanentemente in pressione, ad uso esclusivo antincendio;
- Attacchi di mandata per autopompa;
- Valvole di intercettazione;
- Naspi

Tutti i componenti saranno costruiti, collaudati e installati in conformità alla specifica normativa vigente, con una pressione nominale relativa sempre superiore a quella massima che il sistema può raggiungere in ogni circostanza e comunque non minore di 1.2 MPa (12 bar).

3. PROGETTAZIONE DELL'IMPIANTO

La misurazione e la natura del carico di incendio, l'estensione delle zone da proteggere, la probabile velocità di propagazione e sviluppo dell'incendio, il tipo e la capacità dell'alimentazione disponibile e la presenza di una rete idrica pubblica predisposta per il servizio antincendio sono i fattori di cui si è tenuto conto nella progettazione della rete di naspi.

CRITERI DI DIMENSIONAMENTO

I criteri di dimensionamento di seguito riportati sono desunti dalle regole di buona tecnica, affermate a livello internazionale, e costituiscono una guida per la definizione dei requisiti di prestazione degli impianti.

Per l'attività in esame è stata condotta un'analisi del rischio di incendio, in funzione del contenuto dell'edificio sede dell'attività e della probabilità di sviluppo di un incendio. In funzione del livello di rischio determinato sono state poi definite le adeguate portate, pressioni, contemporaneità e, infine, il periodo minimo di erogazione della rete idrica in esame (appendice B della **UNI 10779**).

La scelta dell'area di rischio è stata poi effettuata in conformità con quanto stabilito dalla **UNI 10779** facendo riferimento anche alla UNI EN 12845.

Aree di LIVELLO 1

Vengono definite *aree di livello* 1 le aree nelle quali la quantità e/o la combustibilità dei materiali presenti sono basse e presentano comunque basso rischio di incendio in termini di probabilità di innesco e di carico di incendio, velocità di propagazione delle fiamme e possibilità di controllo dell'incendio da parte delle squadre di emergenza.

Le aree di livello 1 corrispondono a quelle definite di classe LH e OH1 dalla UNI EN 12845.

DIMENSIONAMENTO DELLA RETE IDRICA

Il calcolo idraulico della rete di tubazioni consente di dimensionare ogni tratto di tubazione in base alle perdite di carico distribuite e localizzate che si hanno in quel tratto. Esso è stato eseguito sulla base dei dati geometrici (lunghezze dei tratti della rete, dislivelli geodetici, diametri nominali delle tubazioni), portando alla determinazione di tutte le caratteristiche idrauliche dei tratti (portata, perdite distribuite e concentrate) e quindi della prevalenza e della portata totali necessari delle caratteristiche idrauliche minime dell'acquedotto di alimentazione della rete.

E' stata inoltre eseguita la verifica della velocità massima raggiunta dall'acqua in tutti i tratti della rete; in particolare è stato verificato che essa non superi in nessun tratto il valore di 10.00 m/sec.

Perdite di Carico Distribuite

Le perdite di tipo distribuito sono state valutate secondo la seguente formula di Hazen-Williams:

$$H_d = \frac{60500000 \times L \times Q^{1.85}}{C^{1.85} \times D^{4.87}}$$

dove:

60500000 = coefficiente di Hazen - Williams secondo il sistema S.I. (con pressione in MPa)

 H_d = perdite distribuite [bar] Q = portata nel tratto [l/min] L = lunghezza geometrica del tratto [m]

D = diametro della condotta [mm]

C = coefficiente di scabrezza

Descrizione	C (Nuovo)	C (Usato)
AM0-ACCIAIO non legato UNI EN 10255 Serie Media	120	84
P11-POLIETILENE PE 100 PN 16 UNI 10910-2 SDR 11 (S	150	105

Perdite di Carico Localizzate

Le perdite di carico localizzate sono dovute ai raccordi, curve, pezzi a T e raccordi a croce, attraverso i quali la direzione del flusso subisce una variazione di 45° o maggiore (escluse le curve ed i pezzi a T sui quali sono direttamente montati gli erogatori);

Esse sono state trasformate in "lunghezza di tubazione equivalente" come specificato nella norma UNI 10779 ed aggiunte alla lunghezza reale della tubazione di uguale diametro e natura.

Nella determinazione delle perdite di carico localizzate si è tenuto conto che:

- quando il flusso attraversa un Ti e un raccordo a croce senza cambio di direzione, le relative perdite di carico possono essere trascurate;
- quando il flusso attraversa un Ti e un raccordo a croce in cui, senza cambio di direzione, si ha una riduzione della sezione di passaggio, è stata presa in considerazione la "lunghezza equivalente" relativa alla sezione di uscita (la minore) del raccordo medesimo;
- quando il flusso subisce un cambio di direzione (curva, Ti o raccordo a croce), è stata presa in considerazione la "lunghezza equivalente" relativa alla sezione d'uscita.

Per il calcolo viene impostata la prevalenza residua minima da assicurare ad ogni singolo terminale. In funzione della portata minima indicata dalle norme, poi si procede alla corretta scelta del coefficiente di efflusso, compatibilmente a quelli in commercio e indicati dai costruttori secondo norme CEE. Il calcolo idraulico ci porterà quindi ad avere, per ogni terminale considerato attivo, e in funzione del K impostato, la pressione reale e, conseguentemente, la relativa portata reale.

A tal proposito, non è superfluo specificare che, nel calcolo che viene di seguito riportato, sono stati considerati esclusivamente quei terminali che, secondo norma, nel loro funzionamento simultaneo dovranno garantire al bocchello sfavorito le condizioni idrauliche minime appena citate.

4. DATI DI CALCOLO DELLA RETE EDIICIO F1

Per l'individuazione degli elementi della rete si è proceduto alla numerazione dei nodi e dei lati dei tratti. Le tubazioni utilizzate per la costruzione della rete antincendio sono:

Sigla	Descrizione	C (Nuovo)	C (Usato)
AM0	ACCIAIO non legato UNI EN 10255 Serie Media	120	84
P11	POLIETILENE PE 100 PN 16 UNI 10910-2 SDR 11 (S	150	105

Numero Tratto	Nodi	Lunghezza [m]	Tipo Materiale Tubi	Dislivello [m]
Rete		0 1,	•	
1A	2A-1A	14.28	P11	0.00
2A	3A-2A	14.28	P11	0.00
3A	3A-4A	11.39	P11	0.00
4A	4A-5A	19.82	P11	0.00
5A	5A-6A	3.84	P11	0.00
6A	6A-7A	7.43	AM0	0.00
7 A	7A-8A	0.34	AM0	0.00
8A	7A-9C	3.00	AM0	3.00
9A	7A-10B	3.00	AM0	3.00
10A	5A-11A	32.34	P11	0.00
11A	11A-12A	0.23	AM0	0.00
12A	12A-13C	3.00	AM0	3.00
13A	4A-14A	10.52	P11	0.00
14A	14A-15A	0.34	AM0	0.00
15A	15A-16A	0.55	AM0	0.00
16A	15A-17C	3.00	AM0	3.00
17A	15A-18B	3.00	AM0	3.00
18A	17C-19A	0.55	AM0	0.00
19A	18B-20A	0.55	AM0	0.00
20A	9C-21A	0.34	AM0	0.00
21A	10B-22A	0.34	AM0	0.00
22A	13C-23A	0.34	AM0	0.00

Nella rete sono stati inseriti i seguenti terminali, di cui si riportano in dettaglio le relative caratteristiche:

Nodo Terminale	Tipo Terminale	Attivo	Quota Nodo [m]	Portata Richiesta [1/min]	Prevalenza Minima [bar]	K [bar]
8A	Naspo	Si	0.00	39.60	2.00	28.00
16A	Naspo	Si	0.00	39.60	2.00	28.00
19A	Naspo	Si	3.00	39.60	2.00	28.00
20A	Naspo	Si	-3.00	39.60	2.00	28.00
21A	Naspo	Si	3.00	39.60	2.00	28.00
22A	Naspo	Si	-3.00	39.60	2.00	28.00
23A	Naspo	Si	3.00	39.60	2.00	28.00

Di questi sono stati considerati attivi ai fini del calcolo i seguenti terminali. Si ricorda che, applicando la norma, ad ogni terminale è stato considerata una perdita concentrata di 0.3 bar (30 KPa) all'attacco:

Nodo	Tipo Erogatore	K [bar]	Lunghezza Manichetta [m]	Diametro Bocchello [mm]	Perdita Carico Aggiuntiva [bar]
8A	Naspo	28.00	20.00	8.00	0.21
16A	Naspo	28.00	20.00	8.00	0.00
19A	Naspo	28.00	20.00	8.00	0.19
20A	Naspo	28.00	20.00	8.00	0.00
21A	Naspo	28.00	20.00	8.00	0.18
22A	Naspo	28.00	20.00	8.00	0.00
23A	Naspo	28.00	20.00	8.00	0.18

Sono stati considerati anche i pezzi speciali inseriti in ciascun ramo della rete così come il dislivello geodetico che esiste tra la rete stessa. La seguente tabella mostra la tipologia e il numero dei pezzi speciali inseriti in rete, che generano perdite di carico concentrate:

 $\mathbf{A} = \text{Curve a } 45^{\circ}$

 $\mathbf{B} = \text{Curve a } 90^{\circ}$

 $\mathbf{C} = \text{Curve larghe a } 90^{\circ}$

 \mathbf{D} = Pezzi a T o Croce

 $\mathbf{E} = Saracinesche$

 \mathbf{F} = Valvole di non ritorno

#	Pezzi speciali	L Eq. [m]	#	Pezzi speciali	L Eq. [m]	#	Pezzi speciali	L Eq. [m]
1A		0.00	2A		0.00	3A	В	3.17
4A		0.00	5A	D	5.44	6A	В	1.20
7A		0.00	8A	D	2.40	9A	D	2.40
10A	В	2.72	11A		0.00	12A	В	1.20
13A	D	5.44	14A		0.00	15A	D	1.80
16A	D	2.40	17A	D	2.40	18A	В	0.90
19A	В	0.90	20A	В	0.90	21A	В	0.90
22A	В	0.90			•			

5. RISULTATI DI CALCOLO EDIFICIO F1

E' stato effettuato il calcolo con i dati del paragrafo precedente, nell'ipotesi di limitazione della velocità dell'acqua nei tubi al valore massimo di 10.00 m/sec. Sono stati ottenuti i seguenti risultati:

Portata Impianto : 161.83 1/min

Pressione Impianto: 2.61 bar

Dati Idraulici Tubazioni

Numero	Nodi	Mat.	Stato	Lung	L Eq.	DN [mm - inch]	Diam.	Press NI	Press	Dislivell	Hd [bar]	Hc [bar]	H Disl	Portata	Velocità
Tratto				[m]	[m]	-	Interno	[bar]	NF [bar]	o [m]			[bar]	[l/min]	[m/sec]
							[mm]								
1A	1A-2A	P11	Nuovo	14.28	0.00	75 mm [3"]	59.80	2.61	2.59	0.00	0.02	0.00	0.00	161.83	0.96
2A	2A-3A	P11	Nuovo	14.28	0.00	75 mm [3"]	59.80	2.59	2.57	0.00	0.02	0.00	0.00	161.83	0.96
3A	3A-4A	P11	Nuovo	11.39	3.17	75 mm [3"]	59.80	2.57	2.54	0.00	0.02	0.00	0.00	161.83	0.96
4A	4A-5A	P11	Nuovo	19.82	0.00	75 mm [3"]	59.80	2.54	2.53	0.00	0.02	0.00	0.00	121.74	0.72
5A	5A-6A	P11	Nuovo	3.84	5.44	63 mm [2 1/2"]	50.00	2.53	2.52	0.00	0.00	0.01	0.00	81.84	0.69
6A	6A-7A	AM0	Nuovo	7.43	1.20	40 mm [1 1/2"]	41.90	2.52	2.48	0.00	0.03	0.00	0.00	81.84	0.99
7A	7A-8A	AM0	Nuovo	0.34	0.00	32 mm [1 1/4"]	36.00	2.48	2.28	0.00	0.00	0.00	0.00	42.24	0.69
8A	7A-9C	AM0	Nuovo	3.00	2.40	40 mm [1 1/2"]	41.90	2.48	2.18	3.00	0.00	0.00	0.29	39.60	0.48
10A	5A-11A	P11	Nuovo	32.34	2.72	63 mm [2 1/2"]	50.00	2.53	2.52	0.00	0.01	0.00	0.00	39.90	0.34
11A	11A-12A	AM0	Nuovo	0.23	0.00	40 mm [1 1/2"]	41.90	2.52	2.52	0.00	0.00	0.00	0.00	39.90	0.48
12A	12A-13C	AM0	Nuovo	3.00	1.20	40 mm [1 1/2"]	41.90	2.52	2.22	3.00	0.00	0.00	0.29	39.90	0.48
13A	4A-14A	P11	Nuovo	10.52	5.44	63 mm [2 1/2"]	50.00	2.54	2.54	0.00	0.00	0.00	0.00	40.09	0.34
14A	14A-15A	AM0	Nuovo	0.34	0.00	40 mm [1 1/2"]	41.90	2.54	2.54	0.00	0.00	0.00	0.00	40.09	0.48
16A	15A-17C	AM0	Nuovo	3.00	2.40	40 mm [1 1/2"]	41.90	2.54	2.24	3.00	0.00	0.00	0.29	40.09	0.48
18A	17C-19A	AM0	Nuovo	0.55	0.90	32 mm [1 1/4"]	36.00	2.24	2.05	0.00	0.00	0.00	0.00	40.09	0.66
20A	9C-21A	AM0	Nuovo	0.34	0.90	32 mm [1 1/4"]	36.00	2.18	2.00	0.00	0.00	0.00	0.00	39.60	0.65
22A	13C-23A	AM0	Nuovo	0.34	0.90	32 mm [1 1/4"]	36.00	2.22	2.03	0.00	0.00	0.00	0.00	39.90	0.65

Dati Naspi attivi:

N° Terminale	Tipo	K [bar]	Portata reale [l/min]	Prevalenza Reale [bar]
8A	Naspo	28.00	42.24	2.28
16A	Naspo	28.00	0.00	0.00
19A	Naspo	28.00	40.09	2.05

20A	Naspo	28.00	0.00	0.00
21A	Naspo	28.00	39.60	2.00
22A	Naspo	28.00	0.00	0.00
23A	Naspo	28.00	39.90	2.03

Dati Nodi:

#	Tipo	Quota [m]	Press. Effettiva [bar]	Portata reale [l/min]	#	Tipo	Quota [m]	Press. Effettiva [bar]	Portata reale [l/min]
1A	Allaccio acquedotto	0.00	2.61	161.83	2A	Attacco VVF	0.00	2.59	0.00
3A	Nodo	0.00	2.57	161.83	4A	Nodo	0.00	2.54	161.83
5A	Nodo	0.00	2.53	121.74	6A	Nodo	0.00	2.52	81.84
11A	Nodo	0.00	2.52	39.90	14A	Nodo	0.00	2.54	40.09

RIASSUNTO DIAMETRI:

Numero Tratto	DN/DE	Diam. Interno [mm]									
1A	75 mm [3"]	59.80	2A	75 mm [3"]	59.80	3A	75 mm [3"]	59.80	4A	75 mm [3"]	59.80
5A	63 mm [2 1/2"]	50.00	6A	40 mm [1 1/2"]	41.90	7A	32 mm [1 1/4"]	36.00	8A	40 mm [1 1/2"]	41.90
9A	40 mm [1 1/2"]	41.90	10A	63 mm [2 1/2"]	50.00	11A	40 mm [1 1/2"]	41.90	12A	40 mm [1 1/2"]	41.90
13A	63 mm [2 1/2"]	50.00	14A	40 mm [1 1/2"]	41.90	15A	32 mm [1 1/4"]	36.00	16A	40 mm [1 1/2"]	41.90
17A	40 mm [1 1/2"]	41.90	18A	32 mm [1 1/4"]	36.00	19A	32 mm [1 1/4"]	36.00	20A	32 mm [1 1/4"]	36.00
21A	32 mm [1 1/4"]	36.00	22A	32 mm [1 1/4"]	36.00	•					

6. ALIMENTAZIONE EDIFICIO F1

L'alimentazione idrica è assicurata da un acquedotto. L'alimentazione rispetta le richieste minime di pressione e portata per qualunque area di calcolo, risultando, dai dati statistici relativi agli anni precedenti, una indisponibilità annua per manutenzione inferiore al limite di 60 ore previste dalla normativa:

Portata = 161.83 1/min

Pressione = 2.61 bar

7. DATI DI CALCOLO DELLA RETE EDIFICIO F2

Per l'individuazione degli elementi della rete si è proceduto alla numerazione dei nodi e dei lati dei tratti. Le tubazioni utilizzate per la costruzione della rete antincendio sono:

Sigla	Descrizione	C (Nuovo)	C (Usato)
AM0	ACCIAIO non legato UNI EN 10255 Serie Media	120	84
P11	POLIETILENE PE 100 PN 16 UNI 10910-2 SDR 11 (S	150	105

Numero Tratto	Nodi	Lunghezza [m]	Tipo Materiale Tubi	Dislivello [m]
Rete		0	-	
1B	2B-1B	8.66	P11	0.00
2B	2B-3B	10.55	P11	0.00
3B	3B-4B	43.63	P11	0.00
4B	4B-5B	0.29	P11	0.00
5B	5B-6B	0.72	P11	0.00
6B	3B-7B	2.67	P11	0.00
7B	7B-8B	1.10	AM0	0.00
8B	8B-9B	0.41	AM0	0.00
9B	8B-10C	3.00	AM0	3.00
10B	2B-11B	0.39	AM0	0.00
11B	2B-12B	62.98	P11	0.00
12B	12B-13B	0.92	P11	0.00
13B	13B-14B	0.42	AM0	0.00
14B	13B-15A	3.00	AM0	3.00
15B	13B-16C	3.00	AM0	3.00
16B	10C-19B	0.41	AM0	0.00
17B	15A-17A	0.42	AM0	0.00
18B	16C-18C	0.42	AM0	0.00

Nella rete sono stati inseriti i seguenti terminali, di cui si riportano in dettaglio le relative caratteristiche:

Nodo	Tipo	Attivo	Quota Nodo	Portata Richiesta	Prevalenza Minima	K [bar]
Terminale	Terminale		[m]	[1/min]	[bar]	
6B	Naspo	Si	0.00	39.60	2.00	28.00
9B	Naspo	Si	0.00	39.60	2.00	28.00
14B	Naspo	Si	0.00	39.60	2.00	28.00
19B	Naspo	Si	3.00	39.60	2.00	28.00

Di questi sono stati considerati attivi ai fini del calcolo i seguenti terminali. Si ricorda che, applicando la norma, ad ogni terminale è stato considerata una perdita concentrata di 0.3 bar (30 KPa) all'attacco:

Nodo	Tipo Erogatore	K [bar]	Lunghezza	Diametro Bocchello	
			Manichetta [m]	[mm]	Aggiuntiva [bar]
6B	Naspo	28.00	20.00	8.00	0.20
9B	Naspo	28.00	20.00	8.00	0.20
14B	Naspo	28.00	20.00	8.00	0.21
19B	Naspo	28.00	20.00	8.00	0.18

Sono stati considerati anche i pezzi speciali inseriti in ciascun ramo della rete così come il dislivello geodetico che esiste tra la rete stessa. La seguente tabella mostra la tipologia e il numero dei pezzi speciali inseriti in rete, che generano perdite di carico concentrate:

 $A = Curve a 45^{\circ}$

 $\mathbf{B} = \text{Curve a } 90^{\circ}$

 \mathbf{C} = Curve larghe a 90°

 \mathbf{D} = Pezzi a T o Croce

 $\mathbf{E} = Saracinesche$

 \mathbf{F} = Valvole di non ritorno

#	Pezzi	L Eq. [m]	#	Pezzi	L Eq. [m]	#	Pezzi	L Eq. [m]
	speciali			speciali			speciali	
1B		0.00	2B		0.00	3B	2*B	5.44
4B		0.00	5B	В	2.72	6B	D	5.44
7B		0.00	8B		0.00	9B	D	3.60
10B	D	3.00	11B	2*B, D	13.14	12B		0.00
13B		0.00	14B	D	0.00	15B	D	0.00
16B	В	0.90	17B	В	0.00	18B	В	0.00

8. RISULTATI DI CALCOLO EDIFICIO F2

E' stato effettuato il calcolo con i dati del paragrafo precedente, nell'ipotesi di limitazione della velocità dell'acqua nei tubi al valore massimo di 10.00 m/sec. Sono stati ottenuti i seguenti risultati:

Portata Impianto : 166.22 1/min

Pressione Impianto: 2.51 bar

Dati Idraulici Tubazioni

Numero	Nodi	Mat.	Stato	Lung	L Eq.	DN [mm - inch]	Diam.	Press NI	Press	Dislivell	Hd [bar]	Hc [bar]	H Disl	Portata	Velocità
Tratto				[m]	[m]		Interno	[bar]	NF [bar]	o [m]			[bar]	[1/min]	[m/sec]
							[mm]								
1B	1B-2B	P11	Nuovo	8.66	0.00	75 mm [3"]	59.80	2.51	2.50	0.00	0.01	0.00	0.00	166.22	0.99
2B	2B-3B	P11	Nuovo	10.55	0.00	75 mm [3"]	59.80	2.50	2.49	0.00	0.01	0.00	0.00	123.94	0.74
3B	3B-4B	P11	Nuovo	43.63	5.44	63 mm [2 1/2"]	50.00	2.49	2.47	0.00	0.01	0.00	0.00	42.14	0.36
4B	4B-5B	P11	Nuovo	0.29	0.00	63 mm [2 1/2"]	50.00	2.47	2.47	0.00	0.00	0.00	0.00	42.14	0.36
5B	5B-6B	P11	Nuovo	0.72	2.72	63 mm [2 1/2"]	50.00	2.47	2.27	0.00	0.00	0.00	0.00	42.14	0.36
6B	3B-7B	P11	Nuovo	2.67	5.44	63 mm [2 1/2"]	50.00	2.49	2.48	0.00	0.00	0.01	0.00	81.80	0.69
7B	7B-8B	AM0	Nuovo	1.10	0.00	65 mm [2 1/2"]	68.90	2.48	2.48	0.00	0.00	0.00	0.00	81.80	0.37
8B	8B-9B	AM0	Nuovo	0.41	0.00	32 mm [1 1/4"]	36.00	2.48	2.27	0.00	0.00	0.00	0.00	42.20	0.69
9B	8B-10C	AM0	Nuovo	3.00	3.60	65 mm [2 1/2"]	68.90	2.48	2.18	3.00	0.00	0.00	0.29	39.60	0.18
11B	2B-12B	P11	Nuovo	62.98	13.14	75 mm [3"]	59.80	2.50	2.49	0.00	0.01	0.00	0.00	42.28	0.25
12B	12B-13B	P11	Nuovo	0.92	0.00	75 mm [3"]	59.80	2.49	2.49	0.00	0.00	0.00	0.00	42.28	0.25
13B	13B-14B	AM0	Nuovo	0.42	0.00	32 mm [1 1/4"]	36.00	2.49	2.28	0.00	0.00	0.00	0.00	42.28	0.69
16B	10C-19B	AM0	Nuovo	0.41	0.90	32 mm [1 1/4"]	36.00	2.18	2.00	0.00	0.00	0.00	0.00	39.60	0.65

Dati Naspi attivi:

N°	Tipo	K [bar]	Portata reale [l/min]	Prevalenza Reale
Terminale				[bar]
6B	Naspo	28.00	42.14	2.27
9 B	Naspo	28.00	42.20	2.27
14B	Naspo	28.00	42.28	2.28
19B	Naspo	28.00	39.60	2.00

Dati Nodi:

I	#	Tipo	Quota	Press.	Portata reale	#	Tipo	Quota	Press.	Portata reale

Pag. - 17 -

		[m]	Effettiva [bar]	[l/min]			[m]	Effettiva [bar]	[l/min]
1B	Allaccio acquedotto	0.00	2.51	166.22	2B	Nodo	0.00	2.50	166.22
3B	Nodo	0.00	2.49	123.94	4B	Nodo	0.00	2.47	42.14
5B	Nodo	0.00	2.47	42.14	7B	Nodo	0.00	2.48	81.80
12B	Nodo	0.00	2.49	42.28					

RIASSUNTO DIAMETRI:

Numero	DN/DE	Diam.									
Tratto		Interno									
		[mm]			[mm]			[mm]			[mm]
1B	75 mm [3"]	59.80	2B	75 mm [3"]	59.80	3B	63 mm [2 1/2"]	50.00	4B	63 mm [2 1/2"]	50.00
5B	63 mm [2 1/2"]	50.00	6B	63 mm [2 1/2"]	50.00	7B	65 mm [2 1/2"]	68.90	8B	32 mm [1 1/4"]	36.00
9B	65 mm [2 1/2"]	68.90	10B	50 mm [2"]	53.10	11B	75 mm [3"]	59.80	12B	75 mm [3"]	59.80
13B	32 mm [1 1/4"]	36.00	14B	40 mm [1 1/2"]	41.90	15B	40 mm [1 1/2"]	41.90	16B	32 mm [1 1/4"]	36.00
17B	32 mm [1 1/4"]	36.00	18B	32 mm [1 1/4"]	36.00						

9. ALIMENTAZIONI EDIFICIO F2

L'alimentazione idrica è assicurata da un acquedotto. L'alimentazione rispetta le richieste minime di pressione e portata per qualunque area di calcolo, risultando, dai dati statistici relativi agli anni precedenti, una indisponibilità annua per manutenzione inferiore al limite di 60 ore previste dalla normativa:

Portata = 166.22 1/min

Pressione = $2.51 \, \text{bar}$

IL TECNICO	